skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steckler, Michael_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The shallow portion of a megathrust represents the zone of first contact between two colliding plates, and its rheological properties control the seismic and tsunami hazards generated by the fault. The high cost of underwater geodetic data collection results in sparse observations, leading to limited constraints on the interseismic behavior of megathrusts. The Rakhine‐Bangladesh megathrust offers a unique opportunity to probe the behavior of the shallow megathrust as it is the only ocean‐continent subduction zone where the near‐trench region is fully accessible on land. Here, we use observations from ALOS‐2 wide‐swath imagery spanning 2015 to 2022 to conduct an InSAR timeseries analysis of the overriding plate within Bangladesh and the Indo‐Myanmar Ranges. We identify a narrow pattern of alternating uplift and subsidence associated with mapped anticlines but show that it cannot be explained by slip on the megathrust or other fault structures. Instead, we argue that the deformation is likely caused by active aseismic folding within the wedge above a shallow decollement. We show that estimates of the decollement depth derived from a viscous folding model and the observed anticline spacing are in agreement with previous seismic observations of the decollement depth across the fold belt. We suggest that the role of ductile deformation in the overriding plate in subduction zones may be more important than previously recognized. 
    more » « less
  2. Abstract The Indo‐Burman subduction zone represents a global endmember for extreme sediment accretion and is a region characterized by ambiguous tectonic structure. The recent collection of broadband seismic data across the Indo‐Burman accretionary margin as part of the Bangladesh‐India‐Myanmar Array (BIMA) experiment provides an opportunity to investigate the subsurface velocity structure across the incoming plate of an endmember subduction system. We construct a three‐dimensional model for seismic shear velocity using a joint inversion of surface‐ and scattered‐wave constraints. Rayleigh‐wave phase velocities measured from ambient‐noise (12–25 s) and teleseismic earthquakes (20–80 s) constrain absolute shear velocities, while we constrain the locations of and relative contrasts across significant discontinuities in the subsurface using observations from scattered‐wave imaging. From the resulting inversion, we observe two model classes that characterize the evolution of consolidation within the markedly slow uppermost sediments and metasediments along a predominantly southwest‐to‐northeast trend. We interpret variations in deeper seismic structure under two proposed scenarios: (a) a Moho of ∼21–26 km depth underlying a package of metasediments and a thinned basement component, with a slow mantle lithosphere (4.2 km/s) that may contain retained melt from the onset of India‐Antarctica seafloor spreading; or (b) a Moho of ∼51–59 km depth underlying a package of metasediments, basement, and a thick slug of mafic material, which may correspond to significant Kerguelen‐plume‐related underplating. By combining constraints from highly resolved phase‐velocity estimates and scattered‐wave images, we successfully characterize the lateral transitions across the Indo‐Burman forearc margin. 
    more » « less
  3. Abstract The Bengal Basin preserves the erosional signals of coupled tectonic‐climatic change during late Cenozoic development of the Himalayan orogen, yet regional correlation and interpretation of these signals remains incomplete. We present a new geologic map of fluvial‐deltaic deposits of the Indo‐Burman Ranges (IBR), five detrital zircon fission track analyses, and twelve high‐n detrital zircon U‐Pb age distributions (dzUPb) from the Barail (late Eocene–early Miocene), Surma (early–late Miocene), and Tipam (late Miocene–Pliocene) Groups of the ancestral Brahmaputra delta. We use dzUPb statistical tests to correlate the IBR units with equivalent age strata throughout the Bengal Basin. An influx of trans‐Himalayan sediment and the first appearance of ∼50 Ma grains of the Gangdese batholith in the lower Surma Group (∼18–15 Ma) records the early Miocene arrival of the ancestral Brahmaputra delta to the Bengal Basin. Contributions from Himalayan sources systematically decrease up section through the late Miocene as the contribution of Trans‐Himalayan Arc sources increases. The Miocene (∼18–8 Ma) deposition of the Surma Group records upstream expansion of the ancestral Brahmaputra River into southeastern Tibet. Late Miocene (<8 Ma) progradation of the fluvial part of the delta (Tipam Group) routed trans‐Himalayan sediment over the shelf edge to the Nicobar Fan. We propose that Miocene progradation of the ancestral Brahmaputra delta reflects increasing rates of erosion and sea level fall during intensification of the South Asian Monsoon after the Miocene Climate Optimum, contemporaneous with a pulse of tectonic uplift of the Himalayan hinterland and Tibet. 
    more » « less